The preparation of nano silico...
        Preparation of silicon dioxide...
        The preparation method of nano...
        Silicon dioxide surface modifi...
        Modified the surface of silico...
        Silicon dioxide,present in eve...
        Silicon dioxide, production,us...
        Mesoporous silicon dioxide and...
        Silicon dioxide(SiO2) Surface ...
        Silicon dioxide(SiO2) and it's...
        The Use of Silicon Dioxide in ...
        Effect of Adding Silicon Dioxi...
        Silicon Dioxide Films for MEMS...
        Silicon dioxide, cobalt (II, I...
        Comparative of cobalt (II, II...
        Cytotoxicity of the silicon di...
        Study silicon dioxide on human...
        Test toxicity of Silicon Diox...
        Improving stress of silicon di...
        The stress evolution of Silico...
        Stress modification of Silicon...
        The studies of silicon dioxide...
        Study on silicon dioxide surfa...
        Water orientation at the Silic...
        Treated with Silicon Dioxide a...
        Modeling Silicon Dioxide by Fi...
        Investigate on Silicon dioxide...
        Silicon Dioxide, it's backgrou...
        Investigate Silicon Dioxide in...
        The Form of Silicon Dioxide
        The growth of silicon dioxide
        using cesium-modified Silicon ...
        The difference between Silicon...
        CsM-Silicon Dioxide catalyst,i...
        Fourier transforms spectra of ...
        efficient nanoparticle titania...
        Silicon dioxide is neither a r...
        Silicon Dioxide, silicic acid ...
        Silicon Dioxide aerogels and
        Silicon dioxide is the main co...
        Nanoscaled silicon dioxide has...
        Various forms of Silicon dioxi...
        Silicon Dioxide and silicosis
        Properties of form-stable para...
        Silicon dioxide Nanopowder Com...
        Near-field spectroscopy of sil...
        Amorphous Silicon Dioxide
        Influence of Colloidal Silicon...
        study into the effects of amor...
        using silicon dioxide nanopart...
        Materials and methods to preap...
        The effects of nano-Silicon Di...
        Analysis of Proteins that Adhe...
        Characterisation of Nano-Silic...
        Effect of Nano-Silicon Dioxide...
        Ultrafine silicon dioxide comp...
        Silicon dioxide and silica mat...
        review article Alternative die...
        The silicon-silicon dioxide sy...
        Printable etching media for si...
        Silicon dioxide thin films by ...
        Silicon dioxide deposition met...
        Electrical injection and detec...
        Silicon dioxide film and proce...
        silicon dioxide composites as ...
        Alternative Dielectrics to Sil...
        thermally grown silicon dioxid...
        Oxygen-aided synthesis of poly...
        Surface states at steam-grown ...
        Trap creation in silicon dioxi...
        Nano-silicon dioxide used in t...
        Proteomic Analysis of Protein ...
        Study nano-Silicon Dioxide par...
        Study the potential effects of...
        Properties of nano-Silicon Dio...
        Nano-Silicon Dioxide as a fill...
        Nano-Silicon Dioxide particles...
        Nano-Silicon Dioxide plays an ...
        Identification of proteins bou...
        Silicon dioxide and silicon in...
        Functionalized silicon dioxide...
        Investigated the elemental and...
        Silicon dioxide is critical fo...
        Measure the thickness and loss...
        The characteristics of a-plane...
        Germanium nanoparticle growth ...
        A silicon dioxide dispersion
        Silicon dioxide as a filler in...
        Precipitated Silicon Dioxide m...
        The ruby or the silicon dioxid...
        2016--2022 China Development o...
        2016 global consumption patter...
        2016--2022 China's ultra-fine ...
        a porous silicon dioxide aerog...
        Unimaginable: This magical sub...
        Silicon Dioxide production ent...
        Business Club 2015 year-end in...
        Silicon Dioxide is widely used...
        Silicon Dioxide market supply ...
        Silicon Dioxide future of the ...
        the global demand for Silicon ...
        silicone rubber by gas phase s...
        Future consumption growth Sili...
        Silicon Dioxide is an importan...
        Silicon Dioxide plays two role...
        the supply of Silicon Dioxide ...
        Determination of Silicon Dioxi...
        etching the Silicon Dioxide la...
        The invention related to silic...
        Silicon Dioxide market
        Silicon Dioxide as pelleted se...
        nano-Silicon Dioxide on the me...
        A kind of Silicon Dioxide radi...
        Tonghua City in Ji Lin Provinc...
        the silicon dioxide in the tre...
        Asia will become the largest m...
        Foods High in Silicon Dioxide
        Silicon Dioxide in Supplements
        What is silicon dioxide health...
        Other Silicon Dioxide Uses
        Silicon dioxide health product...
        Silicon dioxide promote hair g...
        hydrated silicon dioxide is th...
        silicon dioxide oral health ca...
        Silicon dioxide is a common in...
        The main ingredient of rock cr...
        Some cleaners and detergents c...
        What is Silicon Dioxide gel
        What is liquid silicon dioxide
        The harmful effects of silicon...
        diatomite contains silicon dio...
        nutritional implications of am...
        Precipitated amorphous silicon...
        Silicon dioxide and silicates ...
        Silicon dioxide aerogel has th...
        the preparation of silicon dio...
        Lawrence Livermore National La...
        The nature of the silicon diox...
        Silicon dioxide aerogels have ...
        Silicon dioxide aerogels appli...
        Silicon dioxide aerogels is pa...
        History of silicon dioxide aer...
        Synthetic of silicon dioxide a...
        The production of nano silicon...
        Silicon dioxide aerogels can b...
        Silicon dioxide aerogels can b...
        Develop silicon dioxide(SiO2) ...
        Colloidal silicon dioxide has ...
        Colloidal silicon dioxide manu...
        Form the primary particles of ...
        Colloidal silicon dioxide make...
        Colloidal silicon dioxide and ...
        Medical effect of colloidal si...
        Mesoporous silicon dioxide nan...
        The hollow mesoporous silicon ...
        Mesoporous silicon dioxide nan...
        The application of cationic st...
        Colloidal silicon dioxide and ...
        Gravels with high silicon diox...
        DuPont is one of the colloidal...
        Colloidal silicon dioxide prep...
        Silane modified colloidal sili...
        Surface-modified colloidal sil...
        Two different nano-silicon dio...
        Explore different electrolytes...
        Silicon Dioxide Jewelry indust...
        Silicon dioxide-based Jade
        Citrine (silicon dioxide)
        Silicon dioxide minerals
        Silicon dioxide application
        Mesoporous carbon - silicon di...
        Silicon dioxide aerogels and s...
        Fumed silicon dioxide
        Fumed silicon dioxide process ...
        The use of fumed silicon dioxi...
        The role of fumed silicon diox...
        Fumed silicon dioxide and coat...
        Effect of fumed silicon dioxid...
        Different sizes fumed silicon ...
        Addition of dry fumed silicon ...
        Silicon dioxide and glass
        Silicon dioxide is the main co...
        Fumed silicon dioxide is an ex...
        Chinese Academy of Sciences fo...
        Silicon dioxide can be stacked...
        Silicon dioxide nanomaterials
        Silicon Dioxide, sand and quar...
        Silicon dioxide, crystal latti...
        Silicon dioxide desiccant
        Silicon dioxide, adsorption ma...
        Silicon dioxide masterbatch
        Domestic silicon dioxide matti...
        Nanoscale active silicon dioxi...
        Silicon dioxide matting agent
        Preparation of silicon dioxide...
        Silicon dioxide dust and silic...
        Silicon dioxide and the enviro...
        Nano-silicon dioxide has a wid...
        Nano-silicon dioxide used in r...
        Advantages of nano silicon dio...
        Silicon dioxide played a huge ...
        Nano-silicon dioxide in the fi...
        Hydrophobic nano silicon dioxi...
        Silicon Dioxide Industry News
        Free silicon dioxide content i...
        Hydrophilic coating using an i...
        APTS-modified silicon dioxide ...
        Fumed silicon dioxide used in ...
        Fumed silicon dioxide dispersi...
        Silicon dioxide droplets angle...
        Nano-silicon dioxide can be in...
        Antarctic discovery gorgeous o...
        Liquid Phase Deposition Method...
        Mesoporous silicon dioxide mic...
        Preparation and properties of ...
        Preparation of mesoporous sili...
        Silicon dioxide used in drug d...
        Mesoporous Silicon Dioxide sub...
        Silicon dioxide - chitosan (CH...
        The spray-dried silicon dioxid...
        Modified nano silicon dioxide ...
        Silicon dioxide alternative sc...
        Epoxy coatings and nano-silico...
        Nano-silicon dioxide-modified ...
        Spherical silicon dioxide / ep...
        Fumed silicon dioxide used in ...
        KH-560 modified silicon dioxid...
        Sol - gel method KH-560 modifi...
        KH-560 modified silicon dioxid...
        Silicon dioxide material and K...
        Different soaking time of KH-5...
        KH-560 modified silicon dioxid...
        The effects of ammonium paratu...
        Experiment: silicon dioxide ca...
        Spectrum of AMT / SiO2(silicon...
        Calcination of AMT / SiO2(sili...
        Monodisperse of nano-silicon d...
        Silicon dioxide disperse in ru...
        The success of nano-silicon di...
        The use of silicon dioxide in ...
        The preparation of Super-hydro...
        Preparation of colloidal silic...
        Nano-silicon dioxide particles...
        Hydrophobic silicon dioxide
        A pyridine adsorption on silic...
        Calcined at different temperat...
        Nano-particle chains of silico...
        Dispersion morphology and mech...
        Preparation of Silicon Dioxide...
        The Preparation of Silicon Dio...
        Thermal oxidation method of Pr...
        Sol gel Method of Preparation ...
        APTS-modified silicon dioxide
        APTS modify silicon dioxide in...
        The characterization of APTES ...
        APTS-modified silicon dioxide ...
        Chemical stability of the sili...
        Functionalized mesoporous sili...
        How to measure silicon dioxide...
        Silicone rubber with fumed sil...
        Silicon dioxide in paint
        Porous silicon dioxide powder
        Nano-silicon dioxide have some...
        Mesoporous silicon dioxide is ...
        Silicon dioxide hollow sphere
        Studies on silicon dioxide hol...
        Silicon dioxide microspheres c...
        Fumed silicon dioxide is an ex...
        Fumed Silicon Dioxide Property
        Adding fumed silicon dioxide t...
        Adding silicon dioxide into pl...
        Adding silicon dioxide into ru...
        Fumed silicon dioxide added to...
        Fumed silicon dioxide act as d...
        Fumed silicon dioxide used in ...
        Fumed silicon dioxide used in ...
        Fumed silicon dioxide indexes ...
        Silicon dioxide purification p...
        Silicon dioxide: commonly used...
        Silicon dioxide and other non-...
        Silicon dioxide: preparation p...
        Precipitation method to produc...
        Different methods of preparing...
        Methods of the preparation of ...
        High purity silicon dioxide ap...
        The application of silicon dio...
        The application of silicon dio...
        Silicon dioxide aerogels and n...
        Nano-silicon dioxide as a curi...
        Silicon dioxide used in toothp...
        Silicon dioxide used in a dosi...
        Determination of silicon dioxi...
        Silicon dioxide particles effe...
        Mesoporous silicon dioxide rod...
        High-performance magnetic meso...
        E-commerce applications in the...
        Silicon dioxide vapor depositi...
        Different methods to prepare h...
        Silicon dioxide-coated
        Use of silane coupling agent m...
        Free silicon dioxide dust on w...
        Silicon dioxide is cheap and r...
        Silicon dioxide microspheres p...
        Colloidal silicon dioxide
        Silicon dioxide content determ...
        Porous silicon dioxide microsp...
        Mesoporous silicon dioxide nan...
        Methods for determination of s...
        Determination of silicon dioxi...
        Sol-gel synthesis of mesoporou...
        Sol-gel synthesis of mesoporou...
        Nano-silicon dioxide surface t...
        Preparation of silicon dioxide...
        Ultrafine spherical silicon di...
        Silicon dioxide, characterizat...
        Silicon dioxide, analysis
        Modified nano-silicon dioxide
        Silicon dioxide automatic anal...
        Method for determination of si...
        Fumed silicon dioxide gel coat...
        Determine silicon dioxide cont...
        Mesoporous silicon dioxide rod...
        Silicon dioxide dust cause pul...
        Targeted mesoporous silicon di...
        Antioxidant Effects of nanosca...
        The biological effect of the m...
        Synergies of mesoporous silico...
        Antioxidant effects of curcumi...
        Silicon dioxide ultrafine powd...
        Structure and Properties of Si...
        Silicon dioxide used in resin ...
        Application of silicon dioxide...
        Silicon dioxide's preparation ...
        Hydrothermal preparation of si...
        Preparation of Silicon Dioxide...
        Silicon dioxide prepaerd by di...
        The effects of different react...
        Silicon dioxide is the main co...
        Fumed silicon dioxide has vari...
        Fumed silicon dioxide standard...
        Prospect of Fumed Silicon Diox...
        Monodispersed silicon dioxide ...
        Monodisperse spherical silicon...
        Silicon dioxide ultrafine powd...
        Prepare silicon dioxide(SiO2) ...
        The quality of silicon dioxide...
        The formation mechanism of sil...
        Silicon Dioxide(SiO2) Particle...
        Silicon dioxide colloidal crys...
        Preparation of colloidal silic...
        Silicon dioxide NanorattleTrop...
        Influencing factors of the pre...
        Some applications of monodispe...
        Domestic studies have found th...
        Nanoscale: exosomes silicon di...
        Nano Silicon Dioxide Sandwich ...
        Development History of Silicon...
        Problems in application of nan...
        The principle of silicon dioxi...
        Effect of Solvent Amount and C...
        Drying Technology of Silicon D...
        Silicon dioxide aerogels are u...
        Application of silicon dioxide...
        Silicon dioxide aerogel materi...
        Silicon dioxide aerogels insul...
        Nano-porous silicon dioxide ar...
        Study on the Mechanical Proper...
        Research Status and Developmen...
        Silicon dioxide aerogels were ...
        Sol-gel method was used to pre...
        Investigate the crosslinking c...
        Application of Spherical Silic...
        Application of Spherical Silic...
        Application of Spherical silic...
        Application of spherical silic...
        Application of nano-silicon di...
        The role of nano - silicon dio...
        Analysis of Silicon Dioxide Na...
        Synthesis of spherical and mon...
        Synthesis and Characterization...
        Study on Particle Size and Par...
        Electron Absorption Spectra of...
        Monodisperse silicon dioxide s...
         More
 
 
  Products

Silicon Dioxide

Use:mainly used for ink-jet paper,coating,plastic, hatch master batch, count-static master batch etc.

Item NameSpecification
AppearanceWhite powder
SiO     ≥99% 
Heating loss
5.5-6.5% 
Ignition loss
3.9-4.6% 
PH 6.8-7.0
DBP2.9-3.2 ml/g
BET200-235 m2/g
Supphate ≤0.8% 
Whiteness ≥94
Particle Size3-5 um
Apparent Density ≤
0.20g/ml
Fe ≤180mg/kg
Cu ≤10mg/kg
Mn ≤10mg/kg

Packing:  10kg / bag or Upon clients' request.. 

Silicon dioxide, also known as silica (from the Latin silex), is a chemical compound that is an oxide of silicon with the chemical formula SiO2. It has been known since ancient times. Silica is most commonly found in nature as quartz, as well as in various living organisms.[5][6] In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and most abundant families of materials, existing both as several minerals and being produced synthetically. Notable examples include fused quartz, crystal, fumed silica, silica gel, and aerogels. Applications range from structural materials to microelectronics to components used in the food industry.

Silicon dioxide Production

Silicon dioxide is mostly obtained by mining and purification of quartz. Quartz comprises more than 10% by mass of the earth's crust. This product will be suitable for many purposes while for others chemical processing will be required to make a purer or otherwise more suitable (e.g. more reactive or fine-grained) product.

Silicon dioxide Fumed silica

Pyrogenic silica (sometimes called fumed silica or silica fume) is a very fine particulate or colloidal form of silicon dioxide. It is prepared by burning SiCl4 in an oxygen rich hydrocarbon flame to produce a "smoke" of SiO2.

SiCl4 + 2 H2 + O2 → SiO2 + 4 HCl.

Silicon dioxide Silica fume

This product is obtained as byproduct from hot processes like ferro-silicon production. It is less pure than fumed silica and should not be confused with that product. The production process, particle characteristics and fields of application of fumed silica are all different from those of silica fume.

Silicon dioxide Precipitated silica

Amorphous silica, silica gel, is produced by the acidification of solutions of sodium silicate. The gelatinous precipitate is first washed and then dehydrated to produce colorless microporous silica. Idealized equation involving a trisilicate and sulfuric acid is shown:

Na2Si3O7 + H2SO4 → 3 SiO2 + Na2SO4 + H2O

Approximately one billion kilograms/year (1999) of silica was produced in this manner, mainly for use for polymer composites – tires and shoe soles.

Silicon dioxide On microchips

Thin films of silica grow spontaneously on silicon wafers via thermal oxidation. This route gives a very shallow layer (approximately 1 nm or 10 ?) of so-called native oxide. Higher temperatures and alternative environments are used to grow well-controlled layers of silicon dioxide on silicon, for example at temperatures between 600 and 1200 °C, using so-called dry or wet oxidation with O2 or H2O, respectively. The depth of the layer of silicon replaced by the dioxide is 44% of the depth of the silicon dioxide layer produced.

The native oxide layer can be beneficial in microelectronics, where it acts as electric insulators with high chemical stability. In electrical applications, it can protect the silicon, store charge, block current, and even act as a controlled pathway to limit current flow.

silicon dioxide Keyword

silicon dioxide uses

silicon dioxide in food

silicon dioxide properties

colloidal silicon dioxide

buy silicon dioxide

silicon dioxide structure

where can i buy silicon dioxide

silica silicon dioxide

silicon dioxide silica

silicon dioxide food

silicon dioxide bonding

silicon dioxide for sale

silicon dioxide sand

silicon dioxide price

silicon dioxide in supplements

silicon dioxide coating

where to buy silicon dioxide

silicon dioxide colloidal

silicon dioxide sio2

silicon dioxide health

amorphous silicon dioxide

silicon dioxide glass

silicon dioxide suppliers

silicon dioxide where to buy

silicon dioxide buy

silicon dioxide chemical properties

silicon dioxide food grade

silicon dioxide food additive

silicon dioxide supplements

silicon dioxide abrasive

silicon dioxide allergy

silicon dioxide side effects

silicon dioxide nanopowder

silicon dioxide uses in food

silicon dioxide gel

food grade silicon dioxide

silicon dioxide in tablets

silicon dioxide manufacturers

silicon dioxide safety

silicon dioxide used for

sio2 silicon dioxide

what is silicon dioxide

silicon dioxide in vitamins

silicon dioxide e551

e551 silicon dioxide

liquid silicon dioxide

silicon dioxide quartz

dioxide silicon

bonding in silicon dioxide

silicon dioxide water

quartz silicon dioxide

silicon dioxide substrate

sand silicon dioxide

properties silicon dioxide

products containing silicon dioxide

abrasive silicon dioxide

pure silicon dioxide

silicon dioxide compound

silicon dioxide physical and chemical properties

silicon dioxide in food safe

colloidal silicon dioxide uses

silicon dioxide safe

glass silicon dioxide

silicon dioxide hardness

silicon dioxide amorphous

silicon dioxide symbol

silicon dioxide semiconductor

silicon dioxide insulator

silicon dioxide liquid

silicon dioxide natural

silicon dioxide organic

silicon dioxide permittivity

silicon dioxide molecule

silicon dioxide film

silicon dioxide nanoparticles

crystalline silicon dioxide

silicon dioxide msds

solid silicon dioxide

silicon dioxide dielectric

silicon dioxide cas

silicon dioxide cas no

silicon dioxide solubility

uses of silicon dioxide

silicon dioxide allergy symptoms

silicon dioxide in water

amorphous silicon dioxide in food

silicon dioxide in nature

silicon dioxide color

properties of silicon dioxide

what has silicon dioxide in it

silicon dioxide solubility in water

silicon dioxide particles

what is silicon dioxide used for

silicon dioxide chemistry

silicon dioxide colour

structure and bonding of silicon dioxide

silicon dioxide solid

silicon dioxide electrical properties

colloidal silicon dioxide formula

bonding of silicon dioxide

colloidal silicon dioxide structure

silicon dioxide shape

chemical reactivity of silicon dioxide

silicon dioxide properties and structure

structure of silicon dioxide

color of silicon dioxide

hydrated silicon dioxide

silicon dioxide gas

is silicon dioxide safe

chemical properties of silicon dioxide

silicon dioxide molecular structure

silicon dioxide in sand

physical properties of silicon dioxide

silicon dioxide formula

silicon dioxide wafer

shape of silicon dioxide

structure silicon dioxide

silicon dioxide applications

silicon dioxide chemical reactivity

fumed silicon dioxide

silicon dioxide pesticide

formula for silicon dioxide

silicon dioxide lattice

what is silicon dioxide side effects

silicon dioxide dangers

side effects of silicon dioxide

silicon dioxide e number

silicon dioxide resistivity

colloidal silicon dioxide side effects

msds silicon dioxide

hydrophobic silicon dioxide

silicon dioxide in food side effects

silicon dioxide health benefits

permittivity silicon dioxide

silicon dioxide molecular shape

silicon dioxide structural formula

silicon dioxide magnesium

piece of silicon dioxide

silicon dioxide physical properties

what are the uses of silicon dioxide

silicon dioxide hydrophobic

precipitated silicon dioxide

structure and bonding in silicon dioxide

chemical formula for silicon dioxide

silicon dioxide italiano

what is the formula for silicon dioxide

silicon dioxide in pills

porous silicon dioxide

refractive index of silicon dioxide

what is silicon dioxide in food

facts about silicon dioxide

silicon dioxide ionic

what is colloidal silicon dioxide

use of silicon dioxide

is silicon dioxide bad for you

silicon dioxide espa?ol

silicon dioxide hydrophilic

silicon dioxide benefits

uses for silicon dioxide

is silicon dioxide harmful

silicon dioxide chemical formula

silicon dioxide toothpaste

silicon dioxide en fran?ais

solubility of silicon dioxide

silicon dioxide in food dangers

silicon dioxide health risks

silicon dioxide covalent

silicon dioxide facts

silicon dioxide anti caking agent

silicon dioxide density

the uses of silicon dioxide

silicon dioxide what is it

silicon dioxide appearance

is silicon dioxide soluble in water

density of silicon dioxide

is silicon dioxide in food harmful

silicon dioxide side effects in supplements

what are the properties of silicon dioxide

anti caking agent silicon dioxide

is silicon dioxide sand

silicon dioxide cancer

silicon dioxide nedir

silicon dioxide examples

silicon dioxide properties and uses

silicon dioxide chemical structure

benefits of silicon dioxide

silicon dioxide pdf

examples of silicon dioxide

dangers of silicon dioxide

side effects of silicon dioxide in supplements

physical and chemical properties of silicon dioxide

is silicon dioxide bad

silicon dioxide uses medicine

what is the use of silicon dioxide

silicon dioxide toxicity

silicon dioxide reactions

silicon dioxide wiki

is silicon dioxide safe to eat

chemical formula of silicon dioxide

health benefits of silicon dioxide

chemical and physical properties of silicon dioxide

appearance of silicon dioxide

how to make silicon dioxide

silicon dioxide cos è

silicon dioxide use

silicon dioxide hazards

what are the chemical properties of silicon dioxide

what is the chemical formula for silicon dioxide

silicon dioxide что это

chemical structure of silicon dioxide

formula of silicon dioxide

silicon dioxide allergic reaction

two properties of silicon dioxide

silicon dioxide aerogel

what is silicon dioxide used for in food

is silicon dioxide safe for human consumption

what is the structure of silicon dioxide

silicon dioxide common name

is silica the same as silicon dioxide

collodial silicon dioxide

what is silicon dioxide in supplements

silicon dioxide bond type

silicon dioxide cas number

molar mass of silicon dioxide

que es silicon dioxide

applications of silicon dioxide

what is silicon dioxide in food dangerous

difference between silica and silicon dioxide

refractive index silicon dioxide

what are the physical properties of silicon dioxide

define silicon dioxide

silicon dioxide definition

silicon dioxide pregnancy

why is silicon dioxide used as an abrasive

silicon dioxide co to jest

common name of silicon dioxide

where is silicon dioxide found

is silicon dioxide dangerous

silicon dioxide health hazards

molecular structure of silicon dioxide

chemical reactions of silicon dioxide

why is silicon dioxide used in abrasive

silicon dioxide anti caking

what is the appearance of silicon dioxide

silicon dioxide dangers in food

does silicon dioxide dissolved in water

colloidal silicon dioxide solubility

some common uses for silicon dioxide

silicon dioxide model

molecular weight of silicon dioxide

silicon dioxide deutsch

common name for silicon dioxide

where does silicon dioxide occur in nature

is silicon dioxide a compound

silicon dioxide ??? ????

is silicon dioxide safe in supplements

hardness of silicon dioxide

silicon dioxide 中文

what does silicon dioxide do

silicon dioxide is sand

silicon dioxide adalah

solubility of silicon dioxide in water

the structure of silicon dioxide

silicon dioxide diagram

is silicon dioxide reactive

silicon dioxide ftir

silicon dioxide safe to eat

silicon dioxide at room temperature

silicon dioxide index of refraction

why is silicon dioxide insoluble in water

silicon dioxide bad for you

silicon dioxide danger

formula silicon dioxide

silicon dioxide good or bad

where does silicon dioxide come from

is silicon dioxide toxic

why is silicon dioxide in food

chemical formula silicon dioxide

physical properties of sand silicon dioxide

silicon dioxide health effects

history of silicon dioxide

what type of bond is silicon dioxide

what is the common name for silicon dioxide

silicon dioxide molecular weight

what is the formula of silicon dioxide

symbol for silicon dioxide

what type of solid is silicon dioxide

how is silicon dioxide formed

another name for silicon dioxide

diagram of silicon dioxide

silicon dioxide harmful

is silicon dioxide good for you

type of bonding in silicon dioxide

is silicon dioxide ionic

silicon dioxide specific heat

chemical formula for colloidal silicon dioxide

silicon dioxide bad

is silicon dioxide a mixture

sand is silicon dioxide

reaction of silicon dioxide with water

why is silicon dioxide a solid

what type of bonding does silicon dioxide have

silicon dioxide heat capacity

heat capacity of silicon dioxide

silicon dioxide is it bad for you

who discovered silicon dioxide

silicon dioxide carcinogen

hazards of silicon dioxide

colloidal silicon dioxide chemical formula

density silicon dioxide

silicon dioxide molecular formula

silicon dioxide forms the cell walls of

is silicon dioxide a solid

is silicon dioxide natural

definition of silicon dioxide

is silicon dioxide

molecular formula of silicon dioxide

what is the chemical formula of silicon dioxide

what is the molar mass of silicon dioxide

is silicon dioxide edible

molecular formula for silicon dioxide

is silicon dioxide a gas

silicon dioxide とは

molar mass silicon dioxide

silicon dioxide equation

silicon dioxide 意味

what is the symbol for silicon dioxide

silicon dioxide molecular geometry

chemical equation for silicon dioxide

structural formula of silicon dioxide

how many atoms are in silicon dioxide

is silicon dioxide hard

Silicon dioxide laboratory or special methods

From silicate esters

Many routes to silicon dioxide start with silicate esters, the best known being tetraethyl orthosilicate (TEOS). Simply heating TEOS at 680–730 °C gives the dioxide:

Si(OC2H5)4 → SiO2 + 2 O(C2H5)2

Similarly TEOS combusts around 400 °C:

Si(OC2H5)4 + 12 O2 → SiO2 + 10 H2O + 8 CO2

TEOS undergoes hydrolysis via the so-called sol-gel process. The course of the reaction and nature of the product are affected by catalysts, but the idealized equation is:

Si(OC2H5)4 + 2 H2O → SiO2 + 4 HOCH2CH3

Other methods

Being highly stable, silicon dioxide arises from many methods. Conceptually simple, but of little practical value, combustion of silane gives silicon dioxide. This reaction is analogous to the combustion of methane:

SiH4 + 2 O2 → SiO2 + 2 H2O.

Silicon dioxide Uses

An estimated 95% of silicon dioxide produced is consumed in the construction industry, e.g. for the production of Portland cement. Other major applications are listed below.

Precursor to glass and silicon

Silica is used primarily in the production of glass for windows, drinking glasses, beverage bottles, and many other uses. The majority of optical fibers for telecommunication are also made from silica. It is a primary raw material for many ceramics such as earthenware, stoneware, and porcelain.

Silicon dioxide is used to produce elemental silicon. The process involves carbothermic reduction in an electric arc furnace:

SiO2 + 2 C → Si + 2 CO

Major component used in sand casting

Silica, in the form of sand is used as the main ingredient in sand casting for the manufacture of a large number of metallic components in engineering and other applications. The high melting point of silica enables it to be used in such applications.

Food and pharmaceutical applications

Silica is a common additive in the production of foods, where it is used primarily as a flow agent in powdered foods, or to adsorb water in hygroscopic applications. It is the primary component of diatomaceous earth. Colloidal silica is also used as a wine, beer, and juice fining agent.[7]

In pharmaceutical products, silica aids powder flow when tablets are formed.

Other

A silica-based aerogel was used in the Stardust spacecraft to collect extraterrestrial particles. Silica is also used in the extraction of DNA and RNA due to its ability to bind to the nucleic acids under the presence of chaotropes. Hydrophobic silica is used as a defoamer component. In hydrated form, it is used in toothpaste as a hard abrasive to remove tooth plaque.

In its capacity as a refractory, it is useful in fiber form as a high-temperature thermal protection fabric. In cosmetics, it is useful for its light-diffusing properties and natural absorbency. It is also used as a thermal enhancement compound in ground source heat pump industry.

Silicon dioxide Structure

Structural motif found in α-quartz, but also found in almost all forms of silicon dioxide.

In the majority of silicates, the Si atom shows tetrahedral coordination, with 4 oxygen atoms surrounding a central Si atom. The most common example is seen in the quartz crystalline form of silica SiO2. In each of the most thermodynamically stable crystalline forms of silica, on average, all 4 of the vertices (or oxygen atoms) of the SiO4 tetrahedra are shared with others, yielding the net chemical formula: SiO2.

Relation between refractive index and density for some SiO2 forms.

For example, in the unit cell of α-quartz, the central tetrahedron shares all 4 of its corner O atoms, the 2 face-centered tetrahedra share 2 of their corner O atoms, and the 4 edge-centered tetrahedra share just one of their O atoms with other SiO4 tetrahedra. This leaves a net average of 12 out of 24 total vertices for that portion of the 7 SiO4 tetrahedra that are considered to be a part of the unit cell for silica (see 3-D Unit Cell).

SiO2 has a number of distinct crystalline forms (polymorphs) in addition to amorphous forms. With the exception of stishovite and fibrous silica, all of the crystalline forms involve tetrahedral SiO4 units linked together by shared vertices in different arrangements. Silicon–oxygen bond lengths vary between the different crystal forms, for example in α-quartz the bond length is 161 pm, whereas in α-tridymite it is in the range 154–171 pm. The Si-O-Si angle also varies between a low value of 140° in α-tridymite, up to 180° in β-tridymite. In α-quartz the Si-O-Si angle is 144°.

Fibrous silica has a structure similar to that of SiS2 with chains of edge-sharing SiO4 tetrahedra. Stishovite, the higher-pressure form, in contrast has a rutile-like structure where silicon is 6-coordinate. The density of stishovite is 4.287 g/cm3, which compares to α-quartz, the densest of the low-pressure forms, which has a density of 2.648 g/cm3. The difference in density can be ascribed to the increase in coordination as the six shortest Si-O bond lengths in stishovite (four Si-O bond lengths of 176 pm and two others of 181 pm) are greater than the Si-O bond length (161 pm) in α-quartz. The change in the coordination increases the ionicity of the Si-O bond. But more important is the observation that any deviations from these standard parameters constitute microstructural differences or variations, which represent an approach to an amorphous, vitreous or glassy solid.

The only stable form under normal conditions is α-quartz and this is the form in which crystalline silicon dioxide is usually encountered. In nature impurities in crystalline α-quartz can give rise to colors (see list). The high temperature minerals, cristobalite and tridymite, have both a lower density and index of refraction than quartz. Since the composition is identical, the reason for the discrepancies must be in the increased spacing in the high temperature minerals. As is common with many substances, the higher the temperature the farther apart the atoms due to the increased vibration energy.

The transformation from α-quartz to beta-quartz takes place abruptly at 573 °C. Since the transformation is accompanied by a significant change in volume it can easily induce fracturing of ceramics or rocks passing through this temperature limit.

The high-pressure minerals, seifertite, stishovite, and coesite, on the other hand, have a higher density and index of refraction when compared to quartz. This is probably due to the intense compression of the atoms that must occur during their formation, resulting in a more condensed structure.

Faujasite silica is another form of crystalline silica. It is obtained by dealumination of a low-sodium, ultra-stable Y zeolite with a combined acid and thermal treatment. The resulting product contains over 99% silica, has high crystallinity and high surface area (over 800 m2/g). Faujasite-silica has very high thermal and acid stability. For example, it maintains a high degree of long-range molecular order (or crystallinity) even after boiling in concentrated hydrochloric acid.

Molten silica exhibits several peculiar physical characteristics that are similar to the ones observed in liquid water: negative temperature expansion, density maximum (at temperatures ~5000 °C), and a heat capacity minimum.[19] Its density decreases from 2.08 g/cm3 at 1950 °C to 2.03 g/cm3 at 2200 °C. When molecular silicon monoxide, SiO, is condensed in an argon matrix cooled with helium along with oxygen atoms generated by microwave discharge, molecular SiO2 is produced with a linear structure. Dimeric silicon dioxide, (SiO2)2 has been prepared by reacting O2 with matrix isolated dimeric silicon monoxide, (Si2O2). In dimeric silicon dioxide there are two oxygen atoms bridging between the silicon atoms with an Si-O-Si angle of 94° and bond length of 164.6 pm and the terminal Si-O bond length is 150.2 pm. The Si-O bond length is 148.3 pm, which compares with the length of 161 pm in α-quartz. The bond energy is estimated at 621.7 kJ/mol.

Silicon dioxide Fused quartz

When molten silicon dioxide SiO2 is rapidly cooled, it does not crystallize but solidifies as a glass. The geometry of the silicon and oxygen centers in glass is similar to that in quartz and most other crystalline forms of the same composition, i.e., silicon is surrounded by a regular tetrahedra of oxygen centers. The difference between the glass and the crystalline forms arise from the connectivity of these tetrahedral units. Although there is no long range periodicity in the glassy network there remains significant ordering at length scales well beyond the SiO bond length. One example of this ordering is found in the preference of the network to form rings of 6-tetrahedra.

The glass transition temperature of pure SiO2 is about 1475 K.

Silicon dioxide Chemical reactions

Manufactured silica fume at maximum surface area of 380 m2/g

Silica is converted to silicon by reduction with carbon.

Fluorine reacts with silicon dioxide to form SiF4 and O2 whereas the other halogen gases (Cl2, Br2, I2) are essentially unreactive.

Silicon dioxide is attacked by hydrofluoric acid (HF) to produce hexafluorosilicic acid:

SiO2 + 6 HF → H2SiF6 + 2 H2O.

HF is used to remove or pattern silicon dioxide in the semiconductor industry.

Silicon dioxide acts as a Lux-Flood acid, being able to react with bases under certain conditions. As it does not contain any hydrogen, it cannot act as a Br?nsted–Lowry acid. While not soluble in water, some strong bases will react with glass and have to be stored in plastic bottles as a result.

Silicon dioxide dissolves in hot concentrated alkali or fused hydroxide, as described in this idealized equation:

SiO2 + 2 NaOH → Na2SiO3 + H2O.

Silicon dioxide will neutralise basic metal oxides (e.g. sodium oxide, potassium oxide, lead(II) oxide, zinc oxide, or mixtures of oxides, forming silicates and glasses as the Si-O-Si bonds in silica are broken successively). As an example the reaction of sodium oxide and SiO2 can produce sodium orthosilicate, sodium silicate, and glasses, dependent on the proportions of reactants:

2 Na2O + SiO2 → Na4SiO4;

Na2O + SiO2 → Na2SiO3;

(0.25–0.8)Na2O + SiO2 → glass.

Examples of such glasses have commercial significance, e.g. soda-lime glass, borosilicate glass, lead glass. In these glasses, silica is termed the network former or lattice former. The reaction is also used in blast furnaces to remove sand impurities in the ore by neutralisation with calcium oxide, forming calcium silicate slag.

Bundle of optical fibers composed of high purity silica.

Silicon dioxide reacts in heated reflux under dinitrogen with ethylene glycol and an alkali metal base to produce highly reactive, pentacoordinate silicates which provide access to a wide variety of new silicon compounds.[25] The silicates are essentially insoluble in all polar solvent except methanol.

Silicon dioxide reacts with elemental silicon at high temperatures to produce SiO:

SiO2 + Si → 2 SiO

Silicon dioxide Solubility in water

The solubility of silicon dioxide in water strongly depends on its crystalline form and is 3–4 times higher for silica than quartz; as a function of temperature, it peaks at about 340 °C. This property is used to grow single crystals of quartz in a hydrothermal process where natural quartz is dissolved in superheated water in a pressure vessel that is cooler at the top. Crystals of 0.5–1 kg can be grown over a period of 1–2 months. These crystals are a source of very pure quartz for use in electronic applications.

Silicon dioxide Occurrence

Biology

Even though it is poorly soluble, silica occurs widely in many plants. Plant materials with high silica phytolith content appear to be of importance to grazing animals, from chewing insects to ungulates. Studies have shown that it accelerates tooth wear, and high levels of silica in plants frequently eaten by herbivores may have developed as a defense mechanism against predation.

It is also the primary component of rice husk ash, which is used, for example, in filtration and cement manufacturing.

Silicification in and by cells has been common in the biological world for well over a billion years. In the modern world it occurs in bacteria, single-celled organisms, plants, and animals (invertebrates and vertebrates). Prominent examples include:

Tests or frustules (i.e. shells) of diatoms, Radiolaria and testate amoebae.

Silica phytoliths in the cells of many plants, including Equisetaceae, practically all grasses, and a wide range of dicotyledons.

The spicules forming the skeleton of many sponges.

Crystalline minerals formed in the physiological environment often show exceptional physical properties (e.g., strength, hardness, fracture toughness) and tend to form hierarchical structures that exhibit microstructural order over a range of scales. The minerals are crystallized from an environment that is undersaturated with respect to silicon, and under conditions of neutral pH and low temperature (0–40 °C).

Formation of the mineral may occur either within the cell wall of an organism (such as with phytoliths), or outside the cell wall, as typically happens with tests. Specific biochemical reactions exist for mineral deposition. Such reactions include those that involve lipids, proteins, and carbohydrates.

It is unclear in what ways silica is important in the nutrition of animals. This field of research is challenging because silica is ubiquitous and in most circumstances dissolves in trace quantities only. All the same it certainly does occur in the living body, leaving us with the problem that it is hard to create proper silica-free controls for purposes of research. This makes it difficult to be sure when the silica present has had operative beneficial effects, and when its presence is coincidental, or even harmful. The current consensus is that it certainly seems important in the growth, strength, and management of many connective tissues. This is true not only for hard connective tissues such as bone and tooth but possibly in the biochemistry of the subcellular enzyme-containing structures as well.

Silicon dioxide health effects

Quartz sand (silica) as main raw material for commercial glass production

Silica ingested orally is essentially nontoxic, with an LD50 of 5000 mg/kg (5 g/kg). On the other hand, inhaling finely divided crystalline silica dust can lead to silicosis, bronchitis, or cancer, as the dust becomes lodged in the lungs and continuously irritates them, reducing lung capacities. Studies of workers with exposure to crystalline silica have shown 10-fold higher than expected rates of lupus and other systemic autoimmune diseases compared to expected rates in the general population. Prior to new rules issued in 2013, OSHA allowed 100 μg per cubic meter of air. The new regulations reduce the amount to 50 μg/m3. The exposure limit for the construction industry is also set at 50 μg/m3 down from 250 μg/m3.

In the body, crystalline silica particles do not dissolve over clinically relevant periods. Silica crystals inside the lungs can activate the NLRP3 inflammasome inside macrophages and dendritic cells and thereby result in processing of pro-Interleukin 1 beta into its mature form. Chronic exposure to silica may thereby account for some of its health hazards, as interleukin-1 is a highly pro-inflammatory cytokine in the immune system. This effect can create an occupational hazard for people working with sandblasting equipment, products that contain powdered crystalline silica and so on. Children, asthmatics of any age, allergy sufferers, and the elderly (all of whom have reduced lung capacity) can be affected in much less time. Amorphous silica, such as fumed silica is not associated with development of silicosis, but may cause irreversible lung damage in some cases. Laws restricting silica exposure with respect to the silicosis hazard specify that they are concerned only with silica that is both crystalline and dust-forming.

A study that followed subjects for 15 years found that higher levels of silica in water appeared to decrease the risk of dementia. The study found an association between an increase of 10 milligram-per-day of the intake of silica in drinking water with a decreased risk of dementia of 11%.

Crystalline silica is used in hydraulic fracturing of formation which contain tight oil and shale gas, a use which presents a health hazard to workers. In 2013 OSHA announced tightened restrictions on the amount of crystalline silica which could be present and required "green completion" of fracked wells to reduce exposure. Crystalline silica is an occupational hazard for those working with stone countertops, because the process of cutting and installing the countertops creates large amounts of airborne silica.

Application of nano-silicon dioxide in the biomedical field:

Nano-silicon dioxide, a three-dimensional network structure, there is a lot of surface residual unsaturated bond and a hydroxyl group in different states, which makes nano-SiO2 has a high surface energy, in a thermodynamically unstable state, and with high chemical activity. Due to the mesoporous silicon dioxide having ordered mesoporous structure, large specific surface area, good biocompatibility and easy surface modification, etc., that shows great prospect in the fields of bio-medicine. The research progress in targeting and imaging modified mesoporous silica multifunctional drug delivery systems were discussed, nano-silicon dioxide composite applications in biology, medicine, membrane science were prospected. Nano-silicon dioxide also have some effect on apoptosis in cultured HaCaT. Nano-SiO2 is a large-scale production of nano-materials, nano-SiO2 amorphous and oral inhalation because of the living body does not cause direct harm is considered to be safe biological nano-materials, has been widely used in disease diagnosis, biological analysis and research imaging, drug delivery, etc., resulting in the increasing of the way into the body, the study of its impact on human health is particularly important to realize it as a widely used biomaterial.

Nano-silicon dioxide material is a hot research in the 21st century, because of its large number of hydroxyl groups present on the surface of an unsaturated bond residue and different states, since the mesoporous silica having ordered and continuously adjustable mesoporous structure, large specific surface area and excellent Ease of biocompatibility and surface modification, etc., make it as a drug delivery systems research focus. In addition, because of its small size effect, quantum size effect and macroscopic quantum tunneling effect, so that the composite nanoparticles having a strange physical and chemical properties. In recent years, researchers continue to explore the advantages of nano-SiO2, at the same time, by restructuring and reorganization of the material prepared by a variety of types of composite materials, which greatly improved the monodisperse of nano-silicon dioxide, the difficult dispersion and ease of reunion and other shortcomings, making many performance has been further optimized and upgraded. It can be widely used in biology, medicine, membrane science and pesticides.

With the development of the establishment of nanotechnology and nano-drug delivery system, many traditional pharmaceutical field problems has been solved, nano-treatment system compared to conventional drugs, targeting its bioavailability and etc. have greatly improved, while these new systems may improve drug stability and drug release kinetics behavior to a greater extent to improve the therapeutic effect and reduce side effects. Therefore, the development of new, diverse nano-drug delivery system throughout Nanobiomedical important issue. Currently, there is a common pharmaceutical carrier liposomes, polymers, particles of gold (Au), mesoporous silicon dioxide (MSN), quantum dots (QD) and etc.. In recent years, inorganic nanoparticles because of their unique properties of light, electricity, magnetism, the size, morphology controllable, large specific surface area and a series of advantages, have attracted wide attention.

Preparation of nano-silicon dioxide particles:

Precipitation: the substance of different chemical compositions were first mixed in solution, the mixed solution was added agent that used to precipitate the appropriate precursors for precipitating, then dried or calcined the precipitate, to obtain the corresponding nanoparticles. Some researcher using the mass fraction of 95% to 98% concentrated H2SO4 and Na2SiO3.9H2O reaction using H2SO4 exothermic reaction was carried out smoothly, and adding a certain amount of dispersants, surfactants during the reaction to prevent the primary particles reunion, prepared a highly dispersed nano-silicon dioxide.

Sol - gel method: refers to the use of high chemical activity of silicon compounds as raw materials, such as silicates, silicates, which was dubbed the solution, after the addition of a strong acid, in order to induce polymerization of silicate, hydrolysis and condensation reaction. Sol formed in solution stable transparent system by slow polymerization aged between particles to form a three-dimensional network structure of the gel, when the inter-network full of solvent lost liquidity, they form a gel, the gel is dried, prepared nano-silicon dioxide.

Microemulsion: two immiscible solvent is formed under the action of a surfactant emulsions in microvesicles by nucleation, coalescence, agglomeration, nanoparticles were obtained after heat treatment.

Currently the most widely used methods were sol - gel silicon dioxide nanoparticles prepared and hydrothermal synthesis, these two methods are mainly use organic silicon source as raw materials, organic surfactant as a template to form nanoparticles, then removing the template by solvent extraction or calcination process, the mesoporous silica nano-particles were formed. Since mesoporous silicon dioxide having a stable framework structure and pore size rule within the range of 2 ~ 50 nm continuous tone, hydroxyl-rich surface is easy to modify, etc., it can be effectively loading and transportation of different sizes and types of drugs.

In recent years with the diagnosis and treatment of diseases, especially cancer, efficient, functional drug carriers modifications are also increasingly diverse, and has successfully targeted a variety of functions, imaging, diagnosis and treatment. Thus, multi-mesoporous silicon dioxide nano-drug delivery system is a new class of nano-drug delivery system has great application value. On the other hand, nanomaterials synthesis, surface modification technology accuracy and diversity of topography and so control has been a great development, morphology of mesoporous silicon dioxide is also more abundant. Currently reported in the literature have been successfully prepared mesoporous silicon dioxide material rod, tube, ellipsoidal, cage-like, film-like, hollow and folders mentality and other novel structure, and its release kinetics in drug delivery and improve drug science and other areas of in-depth discussions.

Multifunction targeting modified mesoporous nano-silicon dioxide delivery systems:

Compared to conventional drugs, targeting nano-drug delivery system, timeliness, efficiency and etc. have greatly improved. In the case of cancer, the most commonly used treatments have surgery, chemotherapy, gene therapy, radiation therapy, hyperthermia, photodynamic therapy, these treatments, although to some extent, played a patient to relieve symptoms and prolong life role, but because drugs can not effectively distinguish between normal tissue and the lesion sites on normal cells and tissues also cause serious damage, so the side effects are huge. Nano-drug delivery system itself has a unique size effect, you can also modify its functionality, in order to achieve the target lesion site aggregation. 

Nano drug delivery targeting transfer systems include passive and active targeting targeting in two ways, namely passive targeting nano-delivery system through the EPR effect in tumor tissue tumor tissue preferentially enriched in the process; namely active targeting nano-delivery system by coupling linking specific ligand or antibody component binding to specific receptors on the cell surface, in order to achieve the targeted tissue accumulation. Excellent support mesoporous silicon dioxide material is considered a transfer of anti-cancer drugs and targeting molecules.

Morelli and etc. use PEG as a template synthesis of mesoporous silicon dioxide, and modified to form a folate-targeted drug delivery system MSN-FOL. HeLa cells with folate receptor positive and negative HEK293 cells as a model, was found carrying cisplatin MSN-FOL HeLa cells have strong growth inhibition, indicating that the system has a selective targeting. The magnetic nanoparticles and mesoporous SiO2 nanoparticle composite can be used as magnetic resonance imaging (MRI) contrast agents. Korea Hyeon group prepared a series of Fe3O4-modified mesoporous silica composite system, and applied to magnetic resonance imaging, drug delivery and so on.

Pan and etc. use mesoporous silica surface modified TAT polypeptide molecules having a nuclear targeting, and resistant cell line as a model, experiments show that the targeting system can greatly enhance the uptake of the drug-resistant cells, and drugs gathered a large number of nuclear sites, so you can achieve better therapeutic effect.

Applications of composite Nano-silicon dioxide in biomedical field:

Application of Antibacterial:

Use of the large specific surface area, multi-dielectric structure and strong adsorption capacity and singular physicochemical properties of nano-silicon dioxide, antibacterial silver ion particles are uniformly designed to mesoporous SiO2 nanoparticles, and to develop efficient, persistent high temperature, broad-spectrum antimicrobial nano-antibacterial powder. Liuyun Ying and other prepared silicon dioxide nano silver antimicrobial powder material, was tested for its antibacterial properties, results showed that 3% of the silver nano-silicon dioxide prepared antibacterial powder in the sintering temperature range of 80-140 bars colon and Staphylococcus aureus bacteria sterilization rate of almost 100%, with excellent antibacterial properties, can be used for antibacterial plastics, antibacterial and antibacterial food packaging, textiles and other fields.

Application of Nano-silicon dioxide in biological enzyme field:

In recent years, there have been many reports of nano materials and organic and inorganic composite material consisting of carriers for enzyme immobilization, as in new materials immobilized material, the metal nanoparticles exhibit many excellent properties, greatly improving the fixed vitality enzyme, showing excellent results.

Application in biomarkers and monitoring:

Inorganic nanocrystals known as quantum dots, in the biological area shown broad application prospects, especially as fluorescent probes for biomarkers, biological testing and other aspects of biological imaging. High molecular quantum dots are generally lipophilic, the need for water soluble modified. Single amino prepared Zhangbing Bo and other dispersion of silicon dioxide quantum dots, the nucleus from a single molecule level surface markers of tumor cells all the negative charge, intuitive reaction of a single cell surface charge distribution. In addition, the composite nano-SiO2 in science film also has some applications, organic - inorganic composite material capable of maintaining the advantages of the two components to improve the shortcomings of the two components, thereby enhancing the overall performance of the resulting material, manufacture organic - inorganic hybrid film, so that both the inorganic film and the organic film strengths, materialized in the film stability, and through the separation performance, stain resistance and other aspects have improved significantly.

The study of quantitative proteomics of nano-silicon dioxide affect human lung cancer cells:

Nano-silicon dioxide is a large-scale production of nano-materials, because of amorphous nano-SiO2 and oral inhalation does not cause directly harm to the living body, it is considered to be safe biological nano-materials, has been widely used in disease diagnosis, biological analysis and imaging, drug delivery,and etc., resulting in its way into the body increasing, the study of its impact on human health is particularly important to realize it as a biomaterial widely used.

After silicon dioxide nanomaterials and cells were incubated, optical microscopy and transmission electron microscopy characterization, the material into the interior of the cell, which can be seen in the transmission electron microscope in the form of vesicles within the cell exists. When silicon dioxide treated 24 h, low concentrations of SiO2 less toxic, but the processing time to 48 h, significantly increased cytotoxicity than 24 h, and with the increase of the amount of material increases. In SiO2 concentration of 200 μg / mL, the cell survival rate has dropped to about 50%. When the material in a concentration of 50 μg / mL A549 cells were cultured at 48 h, cell survival rate of about 70%, then the silicon dioxide cells have a certain degree of damage, and can guarantee the majority of cells are still alive. 

Hazards of silicon dioxide dust:

Silicon dioxide in daily life, production and scientific research has an important purpose, but sometimes cause harm to humans.

Fine silicon dioxide dust than the surface area of 100m2 / g or more may be suspended in the air, if people long-term inhalation of dust containing silicon dioxide, it will suffer from silicosis (because silicon called silicon-old, formerly known as silicosis silicosis) .

Silicosis is an occupational disease, its occurrence and severity, depending on the content of dust in the air and dust in silicon dioxide content, as well as human contact time. Long-term higher silicon dioxide dust content in place, such as a human mining, foundry, sandblasting, made ceramics, refractories and other places of work made easy to contracting this disease.

Thus, in these more dust in the workplace, due to strict labor protection measures, using a variety of techniques and equipment to control dust content in the workplace, in order to ensure the health of staff.

Silicon dioxide is an international common food additives:

Silicon dioxide is an international common food additives. It can solve the product due to moisture absorption caking under pressure formed simultaneously with adsorption, it is a good flow accelerator. For protein powder, milk powder, cocoa powder, sugar, vegetable powder, instant coffee, cereals and other foods. Add food mostly silicon dioxide powder, and silicon dioxide which function in food - related anti-coagulant. Powdered food due to temperature changes, humidity increases or heap pressure between the bag and the bag and other reasons, easy to stick together agglomeration, affect product quality and shelf life. Silicon dioxide can play the role of "film" of the dolphin powder wrapped up, so that the powder separated from each other, in the best of the free-flowing state, to achieve the purpose of anti-caking.

In addition, the silicon dioxide powder wrapped outside, with numerous internal pores absorb ambient moisture in the air, but also to prevent moisture caking during storage of food.

As a food additive, silicon dioxide safety quite tricky, because after being ingested, its chemical properties remain stable in the human body will not break down, it will not be absorbed, how that last place? Only together with the feces, so it will not constitute a hazard to human health.

This caused the silicon dioxide with "silicosis" are completely different, "silicosis" is an occupational disease, its occurrence and severity, depending on the content of dust in the air and dust content of silicon dioxide, and and human contact time. Long-term higher silicon dioxide dust content in place, such as a human mining, foundry, sandblasting, made ceramics, refractories and other places of work made easy to contracting this disease. Into the human body through diet channels silicon dioxide does not pose any threat. This is mainly to two factors: the intake of different ways, with different particle sizes.

According to China's current food additive standard, maximum use of silicon dioxide in frozen drinks, salt and salt substitutes and other food products from the 25 mg / kg to 20 g / kg range, in a number of food additives that may be used the upper limit of the amount be set relatively loose, it also reflects the higher authorities assured the extent of silicon dioxide from the side.

Crystalline silicon dioxide:

16 km from the ground down almost 65% silicon dioxide(SiO2) ore, mainly in the crystalline silicon dioxide(SiO2) quartz ore (ie, the main component is quartz silicon dioxide(SiO2)). More pure quartz as colorless crystals, can be used to prepare the silicon dioxide glass, some of the high temperature chemistry laboratory equipment used is made of quartz glass, UV permeable quartz glass, can be used in the manufacture of medical and used in a mine mercury quartz lamps and other optical instruments, quartz drawn into a wire, the wire has great strength and flexibility, an important new use of quartz glass, is the production of optical fiber used in communications on the light guide, in the information age today, with a microwave and a metal wire transfer information can not meet the communication needs to work in order to enhance the capacity and transfer speed of transmitting information, the frequency of the transmitted signal must be greatly improved, in optical communications, quartz fiber as a conductor can do its faster than previous methods to increase the number of times faster, greatly improve the frequency, its low cost of production, laying fiber optic cables need a million yuan per kilometer, while the previous ordinary cables per kilometer takes 20 million, it's light quality, not afraid of corrosion, the laying of convenience, as long as 27 g per km, while the previous ordinary cables to 1.6 t, its large amount of information on each cable at the same time by one billion people call, you can also send multiple sets TV programs, good performance, anti-electromagnetic interference, confidentiality, can prevent eavesdropping, no electron radiation, and its wide source of raw materials, non-ferrous metals saving, quartz flakes do intermittent done under the influence of a high frequency electric field and contraction, the same frequency and the frequency of the applied electric field, this stretch of quartz in turn causes the surrounding medium to produce similar sound waves, since quartz has this property, it is widely used in the watch industry and ultrasound technology.

Silicon dioxide act as pharmaceutical excipients:

(1)Physical and chemical properties of silicon dioxide:

Silicon dioxide as a white, odorless, hygroscopic, fine amorphous powder, plasmid average diameter of 20 ~ 0nm, the relative density of 2.2 to 2.6. Insoluble in water, ethanol and other organic solvents, do not dissolve in acid (hydrofluoric acid exceptions), was dissolved in hot sodium hydroxide solution.

(2)Usage and dosage of silicon dioxide: 

Silicon dioxide in pharmaceutical manufacturing, mainly used as disintegrating agents, anti-sticking agents, glidants. Silicon dioxide can greatly improve the particle flowability, bulk density increase, so that the resulting increase in tablet hardness, disintegration time shortened to improve the dissolution rate of drugs. In the granules can be used for the manufacture of desiccant, in order to enhance the stability of drugs. Silicon dioxide is one of the microencapsulated material, added to the product in a bag, make microcapsules density and specific surface area increased mobility enhancement. Silicon dioxide can also be used as a filter aid, fining agents and defoamers, and liquid preparations suspending agents, thickening agents. Silicon dioxide in the food industry has a similar purpose.

(3)Silicon Dioxide: [The International Pharmacopoeia (Ph. Int.)] Standard:

Silicon Dioxide is obtained by insolubilizing the dissolved silicon dioxide in sodium silicate solution. Where obtained by the addition of sodium silicate to a mineral acid, the product is termed silica gel; where obtained by the destabilization of a solution of sodium silicate in such manner as to yield very fine particles, the product is termed precipitated silicon dioxide. After ignition at 1000 for not less than 1 hour, it contains not less than 99.0 percent of silicon dioxide(SiO2).

Packaging and storage— Preserve in tight containers, protected from moisture.

Labeling— Label it to state whether it is silicon dioxide gel or precipitated silicon dioxide.

Identification— Transfer about 5 mg to a platinum crucible, mix with about 200 mg of anhydrous potassium carbonate, ignite at a red heat over a burner for 10 minutes, and cool. Dissolve the melt in 2 mL of recently distilled water, warming if necessary, and slowly add 2 mL of ammonium molybdate TS: a deep yellow color is produced.

pH 791: between 4 and 8,in a slurry (1 in 20).

Loss on drying 731— Dry it at 145 for 4 hours: it loses not more than 5.0% of its weight.

Loss on ignition 733— Ignite about 1 g of it, previously dried and accurately weighed, at 1000 for not less than 1 hour: it loses not more than 8.5% of its weight.

Chloride 221— Boil 5 g in 50 mL of water under a reflux condenser for 2 hours, cool, and filter. A 7-mL portion of the filtrate shows no more chloride than corresponds to 1.0 mL of 0.020 N hydrochloric acid (0.1%).

Sulfate 221— A 10-mL portion of the filtrate obtained in the test for Chloride shows no more sulfate than corresponds to 5.0 mL of 0.020 N sulfuric acid (0.5%).

Arsenic, Method I 211— Prepare the Test Preparation as follows. Transfer 4.0 g to a platinum dish, add 5 mL of nitric acid and 35 mL of hydrofluoric acid, and evaporate on a steam bath. Cool, add 5 mL of perchloric acid, 10 mL of hydrofluoric acid, and 10 mL of sulfuric acid, and evaporate on a hot plate to the production of heavy fumes. Cool, cautiously transfer to a 100-mL beaker with the aid of a few mL of hydrochloric acid, and evaporate to dryness. Cool, add 5 mL of hydrochloric acid, dilute with water to about 40 mL, and heat to dissolve any residue. Cool, transfer to a 100-mL volumetric flask, dilute with water to volume, and mix. A 25.0-mL portion of this solution meets the requirements of the test. The limit is 3 ppm.

Heavy metals, Method I 231— Transfer 16.7 mL of the solution prepared for the test for Arsenic into a 100-mL beaker, and neutralize with ammonium hydroxide to litmus paper. Adjust with 6 N acetic acid to a pH of between 3 and 4. Filter, using medium-speed filter paper, wash with water until the filtrate and washings measure 40 mL, and mix. The limit is 0.003%.

Assay— Transfer about 1 g of silicon dioxide Gel to a tared platinum dish, ignite at 1000 for 1 hour, cool in a desiccator, and weigh. Carefully wet with water, and add about 10 mL of hydrofluoric acid, in small increments. Evaporate on a steam bath to dryness, and cool. Add about 10 mL of hydrofluoric acid and about 0.5 mL of sulfuric acid, and evaporate to dryness. Slowly increase the temperature until all of the acids have been volatilized, and ignite at 1000. Cool in a desiccator, and weigh. The difference between the final weight and the weight of the initially ignited portion represents the weight of silicon dioxide(SiO2).

Is Silicon Dioxide Safe?

When you look on a food or supplement ingredients list, you often see things you’ve never heard of, some of them you can’t even pronounce. Though many of these ingredients may seem alarming (and some with good reason), others are safe and it’s merely their name that is off-putting. Silicon dioxide is one such ingredient, found in many products, though often misunderstood.

Why Is It in Food and Supplements?

Along with being found pretty much everywhere on earth, silicon dioxide is found in foods and supplements. But, why?

First, as a food additive, silicon dioxide serves as an anticaking agent. It is used to prevent clumping. In supplements, it’s used to prevent the various powdered ingredients from sticking together.

As with many food additives, consumers often have concerns about finding silicon dioxide on product labels. However, numerous studies have found no health risks associated with this particular ingredient.

Silicon dioxide is found naturally in many plants. For example, leafy green vegetables, beets, bell peppers, brown rice and oats, and alfalfa.

What the Research Says

The fact that it’s found in plants and drinking water, suggests it is safe. But in addition, research has shown that the silica we consume doesn’t accumulate in our bodies; rather, it’s flushed out by the kidneys.

While many of the studies on silica have been done on animals, they have found no link between silicon dioxide and increased risk of cancer, organ damage, or mortality. In addition, studies have found no evidence that silicon dioxide can affect reproductive health, birth weight, or body weight.

Finally, the Food and Drug Administration (FDA) has recognized silicon dioxide as a safe food additive, as do the World Health Organization (WHO) and the European Food Safety Authority (EFSA).

According to a paper prepared in association with WHO, the only negative health effects related to silicon dioxide have been caused by silicon deficiency. In other words, a lack of silicon dioxide may do more harm than too much.

Have Safe Limits Been Set?

Though the research doesn’t indicate any risks associated with silicon dioxide ingestion, the FDA and other global health organizations have set upper limits on its consumption. This is mainly because amounts higher than these set limits have not been sufficiently studied.

In the United States, the FDA says silicon dioxide should not exceed 2 percent of a food’s total weight.

The Takeaway

Silicon dioxide exists naturally within the earth and our bodies. There is no evidence to suggest it is dangerous.

Silicon dioxide is a trace mineral found naturally in many plant foods and is added to many multivitamin supplements. It is necessary for healthy bones, skin, hair and nails. Silicon dioxide is often added to processed foods to keep them fresh and appetizing. You can find the important mineral in foods sources.

Foods High in Silicon Dioxide

RDI (Recommended daily intake)

As a trace mineral, only a small amount of silicon dioxide is needed daily. Many nutritionists believe the human body requires about 5-10 mg of this mineral each day.

Since the recommended daily allowance of silicon dioxide is relatively low, it is easy to get the correct amount if you eat a well-balanced diet. Foods to include in your diet are:

1. Fruits

Not often mentioned in nutrition literature is the fact that many fruits are naturally high in silicon dioxide. The fruits highest in the mineral include raisins, grapes, oranges, apples, cherries and plums.

2. Vegetables

There are several vegetables that can provide some of the recommended daily allowance of silicon dioxide. Vegetables with silicon dioxide include artichokes, beans, peas, asparagus, beet, greens of all kinds, celery, cucumbers, lettuce, radishes and onions.

3. Nuts

In addition to the other nutrients in nuts, almonds and peanuts contain moderately high amounts of silicon dioxide.

4. Sunflower seeds

Also known for high nutritional value, roasted sunflower seeds also contain a healthy amount of silicon dioxide.

5. Pumpkin seeds

Roasted pumpkin seeds have a moderate amount of silicon dioxide so make a simple but healthy snack.

6. Whole grains

Rice, oats and whole grain breads are high in silicon dioxide. Eating whole grains is an easy way to fill the daily requirement for this trace mineral.

7. Water

Normal drinking water is a possible source of silicon dioxide. Hard water has higher levels of the mineral than soft water.

8. Beverages

Coffee, tea and other beverages made with water will contain some amount of silicon dioxide. Beer is an excellent source of the mineral in addition to being a tasty drink. The silicon dioxide in beer is in the form of orthosilicic acid, which is important for bone health and to prevent osteoporosis.

9. Herbs

Horsetail has the most amount of silicon dioxide of all the herbs. Parsley and garlic are two other herbs that provide a relatively high amount of the mineral. Horsetail is believed to be highest in silicon dioxide. You can find extracted horsetail powder from pharmaceutical companies.

Silicon Dioxide in Supplements

1. A food additive

Silicon dioxide is added to powdered foods and other health food supplements to keep other ingredients from binding together. For example, manufacturers add silicon dioxide to salt and many spices to keep those dry substances from clumping.

2. Health benefits

Silicon dioxide is critical for the development of strong nail, bones, teeth and hair. Research indicates that a lack of this mineral may lead to arthritis, poor bone formation, unhealthy skin and poor tooth development. Silicon dioxide also counteracts the effects of aluminum in the body, which may help prevent Alzheimer's disease.

3. Health concerns

Because silicon dioxide is a crystal, it can be an eye irritant if direct exposure occurs. When eyes are exposed to this mineral, the result will be red and watery eyes. If skin is directly exposed to silicon dioxide, the skin may become irritated and itchy. If silicon dioxide is inhaled over time such as can happen with miners, lung damage and potentially lung cancer may result.

4. Food safety

When used in food, the proportion of silicon dioxide to food must be strictly controlled. The mineral should be no more than 2 percent of the total weight of the food. It is also critical that the particle size of silicon dioxide be within limits defined by the Food and Drug Administration.

Other Silicon Dioxide Uses

In addition to its use in food, there are also manufacturing uses for silicon dioxide. These include:

1. Electronics

Silicon dioxide has an extremely high melting point so is useful in electronics where high heat is produced. The mineral is essential for manufacturing fiber optic cables, semi-conductors, and insulation for wires.

2. Conversion of energy

Silicon dioxide has piezoelectric properties. These properties allow the mineral to convert one form of energy to another. For example, silicon dioxide allows mechanical energy to be converted to electrical energy. This conversion of energy enables television and radio stations to transmit signals.

3. Glass

Silica is one of the primary components of glass. Mixed with soda and boron oxide, silicon dioxide creates glass that is highly heat resistant. Thus, in addition to other glass products, silicon dioxide is critical in the creation of heat resistant cooking utensils.

4. Cement

Silicon dioxide is critical in the production of cement. Cement is added to other ingredients to make concrete -- the building block of much of the world's infrastructure.

5. Refractory materials

Finally, silicon dioxide is critical for production of refractory materials. These materials used in building and other areas are highly shock resistant. 


Copyright(C)2016 , Xinxiang Yellow River Fine Chemical Industry Co., Ltd. All Rights Reserved.  Supported by  LookChem Copyright Notice